
Консультация предоставлена только студентам магистратуры ВМК МГУ для подготовки к государственному. экзамену. Любое другое использование
запрещено, в том числе полное или частичное воспроизведение и/или публикация. 1

Консультация к вопросу государственного экзамена магистратуры факультета ВМК МГУ для
студентов, обучающихся по магистерской программе «Суперкомпьютерные системы и
приложения»

Вопрос: Образцы (паттерны) проектирования, их классификация и способ описания. Пример образца.

Образец (или паттерн) – это типовое проектное решение конкретной задачи проектирования,

описанное специальным образом, чтобы облегчить его повторное применение.

Фактически, каждый паттерн является формализованным опытом лучших разработчиков в

индустрии создания ПО.

Основные составляющие части описания образца:

Имя. Идентифицирует образец. Хорошее имя характеризует решаемую проблему и способ ее

решения.

Задача. Описание ситуации, в которой следует применять образец. Это описание включает в

себя: постановку проблемы, контекст проблемы, перечень условий, при выполнении которых имеет

смысл применять образец.

Решение. Описание элементов архитектуры, связей между ними, функций каждого элемента.

Включает в себя UML-диаграммы.

Результаты. Следствия применения паттерна и компромиссы. Преимущества и недостатки

образца. Влияние использования образца на гибкость, расширяемость и переносимость системы.

Каталог образцов «банды четырёх» содержит более 20 образцов, сгруппированных на 3 части:

 порождающие образцы (способы создания экземпляров классов);

 структурные образцы (способы задания статических связей между проектными классами);

 образцы поведения (способы организации взаимодействий между объектами).

Рассмотрим по одному примеру из каждой группы образцов. (При ответе на вопрос достаточно

привести один из трёх примеров и дать по нему пояснения.)

Мост (Bridge)

Классификация: структурный образец.

Назначение: отделить абстракцию от реализации.

Мотивация: наследование жестко привязывает реализацию к абстракции, поэтому лучше иметь

иерархию наследования для интерфейсов и отдельно их реализации.

Ситуации применимости:

 обеспечение независимости абстракции и реализации;

 необходимо расширять подклассами как интерфейсы, так и их реализации;

 изменения в реализации не должны влиять на клиента;

 необходимо разделить большую иерархию наследования на части.

Участники:

 Abstraction – абстракция, в которой определен интерфейс требуемый клиенту;

 RefinedAbstraction – уточненная абстракция с расширенным интерфейсом;

 Implementor – интерфейс для классов-реализаций;

 ConcreteImplementor – конкретный реализатор.

Консультация предоставлена только студентам магистратуры ВМК МГУ для подготовки к государственному. экзамену. Любое другое использование
запрещено, в том числе полное или частичное воспроизведение и/или публикация. 2

Отношения: Абстракция перенаправляет запросы клиента к одной из реализаций Implementora.

Результаты:

 реализация отделяется от интерфейса;

 чтобы заменить реализацию нет необходимости

перекомпилировать абстракцию и ее клиента;

 система становится более легко модифицируемой.

Пример: Пусть есть абстракция Shape (форма), в

ней есть операция draw(), отвечающая за отрисовку. В

каждой конкретной форме (Rectangle, Circle) отрисовка реализуется с помощью примитивов

drawLine(), drawCircle(), описанных в интерфейсе Drawing, реализуемом разными графическими

утилитами DrawingV1, DrawingV2, рассчитанными на работу с разными графическими устройствами

Driver1, Driver2. Диаграмма классов:

Диаграмма взаимодействия:

Если не применять образец, то у Rectangle и Circle могли бы быть два наследника, каждый из

которых рассчитан на работу с одним из двух вариантов графики. Т. е. в иерархии форм было бы 7

классов (см на рис.: Shape, Rectangle, V1Rectangle, V2Rectangle, Circle, V1Circle, V2Circle).

Если добавить ещё формы – наследницы Shape – Triangle, PolyLine, то в первом случае при их

отрисовке дополнительные классы не нужны, так как можно воспользоваться реализациями Drawing.

Во втором случае иерархия разрастается, в ней становится 13 классов (добавляются Triangle,

Shape

+ draw()

Rectangle

+ draw()

drawLine()

Circle

+ draw()

drawCircle()

CircleV2

drawCircle()

CircleV1

drawCircle()

Driver1

+ draw_a_line()

+ draw_a_circle()

Driver2

+ draw_a_line()
+ draw_a_circle()

RectangleV2

drawLine()

RectangleV1

drawLine()

Консультация предоставлена только студентам магистратуры ВМК МГУ для подготовки к государственному. экзамену. Любое другое использование
запрещено, в том числе полное или частичное воспроизведение и/или публикация. 3

TriangleV1, TriangleV2, PolyLine, PolyLineV1, PolyLineV2).

Аналогично применение паттерна Мост выгодно при добавлении поддержки еще одного

графического устройства Driver3. Будет достаточно добавить новую реализацию интерфейса Drawing

– класс DrawingV3, вместо того, чтобы заводить каждой конкретной фигуре наследника с реализацией

отрисовки для нового устройства (RectangleV3, CircleV3, TriangleV3, PolyLineV3).

Strategy (Стратегия)

Классификация: образец поведения.

Назначение: Определяет семейство алгоритмов, инкапсулирует каждый из них и делает их

взаимозаменяемыми.

Мотивация: есть несколько алгоритмов решения одной задачи, которые нежелательно

«зашивать» в клиентский класс.

Ситуации применимости:

 Имеется много родственных классов, отличающихся только поведением.

 Необходимо иметь несколько разных реализаций одной операции.

 Нужно скрыть от клиента сложные, специфичные для алгоритма структуры данных.

 Упрощение кода метода, представляющего собой длинное ветвление или switch.

Участники:

 Strategy – интерфейс общий для семейства алгоритмов;

 ConcreteStrategy – конкретная стратегия, реализующая интерфейс;

 Context – контекст, направляющий запросы клиента стратегиям;

 Client – клиентский класс.

Результаты:

 Иерархия классов стратегий определяет семейство

алгоритмов или поведений, которые можно повторно

использовать.

 Инкапсуляция алгоритма в отдельный класс позволяет

изменять его независимо от контекста.

 Избавляемся от if и switch (улучшаем читаемость

кода).

 Интерфейс класса Strategy общий для всех подклассов

ConcreteStrategy – неважно, сложна или тривиальна их

реализация. Поэтому вполне вероятно, что некоторые

стратегии не будут пользоваться всей передаваемой им

информацией, особенно простые.

Приведем пример использования образца для реализации разных стратегий расчета налогов:

Предполагается, что объект класса Config сообщает SalesOrder ссылку на объект-алгоритм

расчета налогов (либо экземпляр USTax, пригодный для США, либо CanTax, пригодный для Канады).

Если потребуется добавить новые способы расчета, достаточно добавить подклассы CalcTax. Обратите

внимание, что в примере вместо интерфейса и реализации используется абстрактный класс и связи

обобщения.

Альтернативой предложенному решению является внесение внутрь SalesOrder::calcTax() логики

выбора схемы расчета и реализация расчетов в отдельных операциях SalesOrder. Модифицируемость

такого решения ниже, чем при использовании образца.

Абстрактная фабрика (Abstract Factory)

Классификация: образец порождения объектов.

Config

CalcTax

+taxAmount()

USTax

CanadaTax

SalesOrder

+calcTax()
+taxAmount()

+taxAmount()

Консультация предоставлена только студентам магистратуры ВМК МГУ для подготовки к государственному. экзамену. Любое другое использование
запрещено, в том числе полное или частичное воспроизведение и/или публикация. 4

Назначение: предоставляет интерфейс для создания взаимосвязанных и взаимозависимых

объектов, не определяя их конкретных классов.

Мотивация: часто встает задача проектирования программной системы независимой от

конкретной реализации GUI.

Ситуации применимости:

 Система не должна зависеть от того как создаются, компонуются и представляются входящие в нее

объекты;

 Входящие в семейство объекты должны использоваться вместе и необходимо обеспечить

выполнение этого ограничения;

 Система должна конфигурироваться одним из семейств составляющих ее объектов;

 Предоставляется библиотека классов, реализация которых скрыта за интерфейсом.

Участники:

 AbstractFactory – интерфейс с операциями для порождения экземпляров абстрактных классов-

продуктов.

 ConcreteFactory – реализация порождения экземпляров конкретных классов.

 AbstractProduct – интерфейс с операциями класса-продукта.

 ConcreteProduct – реализация абстрактного продукта, объекты которой порождаются одной из

конкретных фабрик.

 Client – класс, использующий интерфейсы AbstractFactory и AbstractProduct.

Отношения:

Обычно, во время выполнения создается один экземпляр ConcreteFactory, который создает

экземпляры конкретных продуктов одного из семейств. Для использования объектов другого

семейства нужно породить другую конкретную фабрику.

Результаты:

 изоляция клиента от деталей реализации классов-продуктов (их имена известны только конкретной

Консультация предоставлена только студентам магистратуры ВМК МГУ для подготовки к государственному. экзамену. Любое другое использование
запрещено, в том числе полное или частичное воспроизведение и/или публикация. 5

фабрике);

 упрощение замены семейств продуктов;

 набор классов-продуктов фиксирован, добавлять новые продукты в семейства трудно.

Представим, что нужно добавить третий класс продуктов. Потребуется добавить иерархию из 3-х

классов и дополнительный метод в каждую фабрику, что довольно затратно.

Пример: две фабрики обеспечивают производство семейств классов-драйверов, работающих с

низким или высоким разрешением. Предполагается, что разрешение драйвера принтера должно

соответствовать дисплейному.

Без применения образца пришлось бы связывать класс ApControl прямыми зависимостями с

классами LowResDD, HiResDD, LowResPrD, HiResPrD. На диаграмме, приведённой выше,

предполагается, что классы LowResPrD и HiResPrD могут иметь общий интерфейс (или общий

суперкласс). Если это не так, совместно с образцом Абстрактная фабрика следует применить образец

Адаптер.

Литература к вопросу

1. Гамма Э., Хелм Р., Джонсон Р., Влиссидес Дж. Приемы объектно-ориентированного

проектирования. Паттерны проектирования. – СПб.: Питер, 2016.

2. Фримен Э., Фримен Э. и др. Паттерны проектирования – СПб: Питер, 2016.

3. Материалы по курсу ООАП/МАППО. Конспект лекции №9 (conspect09,pdf) и слайды к лекции №9

(slides09.pdf):

https://drive.google.com/drive/folders/1he5B9iNXlbhpkW-96GOKItWGm1HRSwle?usp=sharing

AppControl

<<interface>>

DisplayDrv

<<interface>>

PrinterDrv

LowResPrD

print()

HiResPrD

print()

HiDrFactory

getDisplay()

getPrinter()

LowDrFactory

getDisplay()

getPrinter()

LowResDD

display()

HiResDD

display()

print()display()

<<interface>>

DrFactory
getDisplay()

getPrinter()

https://drive.google.com/drive/folders/1he5B9iNXlbhpkW-96GOKItWGm1HRSwle?usp=sharing

